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Econometrics. A field where the concepts are simple, but the real challenge is making sense of

notation so obfuscatory that you wonder if it's done on purpose.

In order to arrive at this statement, I went through a long and confusing journey, one I wish upon

no friend. This document's structure takes my journey in reverse order.[1] I start with what I

eventually pinned down as the clear mathematical facts. Once armed with this toolkit, I do my

best to explain why standard notation is confusing, and attempt to guess, from context, what

econometricians actually mean.

In my view, it's a pretty scathing indictment of the field that I spent about ten times longer

engaging in this interpretative guesswork than I spent understanding the underling concepts.

The facts

Preliminaries

We start with a set of ordered pairs {⟨X , Y ⟩, ⟨X , Y ⟩, ⟨X , Y ⟩, ..., ⟨X , Y ⟩}.1 1 2 2 3 3 n n



You can think of X  and Y  as

real numbers (facts about each of the the n individuals in the population)

or as random variables (probability distributions over facts about n individuals in a

sample),

all the maths will apply equally. (I will return to this fact and comment on it).

The CEF minimises w

Some algebraic facts

We write the equality:

Y = f (X ) + w

Where Y  and X  are known, but w  depends on our choice of f .

Minimisation problem

Suppose we want to solve

w ↔ (Y − f (X ))

The solution is f (X ) = E[Y ∣ X ]. The proof of this is in appendix A. Suppose we specify 

f (X ) as such, we then get:

Y = E[Y ∣ X ] + w

Now f  is known and w  is known (by the subtraction w = Y − E[Y ∣ X ]).

The LRM minimises (e + w )
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Some algebraic facts

Now we write the following equality:

E[Y ∣ X ] = β + β X + e

This says that E[Y ∣ X ] is equal to a linear function of X  plus some number e .

We then have

As before w  is known, whereas e  is a function of β  and β .

Here e  is the distance, for observation i, between the LRM and the CEF; while w  is the distance

between the CEF and the actual value of Y . We can then call u = e + w  the distance

between the LRM and the actual value.[2]

We can also see that E[u ∣ x ] = 0 is equivalent to e = 0, i.e. the CEF and the LRM occupy

the same coordinates.

Minimisation problem

Suppose we want to solve

(e + w ) ↔ (Y − β − β X )

The solution is
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I prove this in appendix B. (It's possible to prove an analogous result in general using matrix

algebra, see appendix C.)

Suppose we specify that β  and β  are equal to these solution values. Now that β  and β  are

known, e  is known too (by the subtraction e = E[Y ∣ X ] − β − β X ). As before, w  is

known.

Thus, in our regression equation,

all of Y , X , β , β , e  and w  (and thus u ), are known.

Comments

Two things to note about the facts above.

Whether we are using real numbers of random variables does not matter for anything we've

said so far. All we have used are the expectation and summation operators and their

properties. Textbooks often warn about the important distinction between the sample and

the population, but as far as these algebraic facts are concerned the difference is

immaterial! Cue ten hours of confusion.

I have not used "hat" notation (as in ). Instead I have described the results of optimisation

procedures carefully using words, like "the solution to this minimisation problem is ...". The

way standard econometrics uses the hat is a prime example of obfuscatory notation.

The hermeneutics

Inconsistent hats

Econometrics textbooks, within the same sentence or paragraph, routinely use the hat in two

ways which seem to me to be incompatible. I here give my best interpretative guess.

Sample analogues?
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In Stock and Watson, p. 158, we have Claim A:

Stock and Watson, p. 163 (Claim B):

So far so good.

Loss function minimisers?

Stock and Watson, p. 187 (Claim C):

This quote is the biggest culprit. After many conversations, I finally understood that we're

supposed to take the quote to mean:

I swear, I'm not taking this quote out of context! Nowhere, in the entire textbook, would you find a

clue that the X  and Y  in claim C are completely different quantities than X  and Y  in claim A.

This is criminal negligence. (I'm also not cherry-picking. My lecture notes cheerfully call  and 

 the 'OLS' solutions, and this usage is standard.)

The linear regression model is:

Y = β + β X + u

Where β + β X  is the population regression line or population regression function, β

is the intercept of the population regression line, and β  is the slope of the population

regression line.
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The OLS estimators,  and , are sample counterparts of the population coefficients 

β  and β . Similarly, the OLS regression line + X  is the sample counterpart of

the population regression line β + β X  and the OLS residuals  are sample

counterparts of the population errors u .
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The OLS estimators,  and  are the values of b  and b  that minimise 

(Y − b − b X ) .
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The OLS estimators,  and  are the values of b  and b  that minimise 

(Y − b − b X ) , where j  is the number of observations in the

sample (j < n if n is the sample size) and Y  and X  are the ith values in

the sample.

β0̂ β1̂ 0 1

∑i=1
j

i
sample

0 1 i
sample 2

i
sample

i
sample

i i i i

β0̂

β1̂

^



Of course, I took claim C at face value, and combined it with claim A, to arrive at β =  and 

β = , which, I gathered from context, was not a desirable conclusion.

Confusing hats

The following is not as bad as the above, since it avoids explicit contradiction, but still sows

confusion by using the hat to mean different things when put on top of different values.

Claim D, from Stock and Watson p. 163:

This is compatible with the loss function mimimiser usage of the hat: claim C, which us  and 

 are loss function minimisers; claim D then tells us that  is the value obtained when you

compute the values of b  and b  which minimise a loss function, and plug them into the

regression function.

But, of course, this "predicted value" verbiage is incompatible with the sample analogue usage. 

 can't be both the predicted value (whether in a sample or not) and the actual value in a

sample. That would imply that predictions are always perfect!

So even if we amend claim C as I've done above, we still can't say that the hat is consistently

used to mean sample analogue, since in the case of  it's apparently used to mean predicted

value. (More specifically predicted value in a sample, one guesses from context. Hermeneutical

ambiguities abound).

Inconsistent causal language

It gets worse. In all of the above we have taken the statement

Y = β + β X + u

to be an innocuous equality: Y  is equal to regression intercept, plus regression slope times X ,

plus some remaining difference. Call this this the algebraic claim.
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Yî β0̂ β1̂ i

β̂0

β̂1 Yî
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But it turns out that the statement is sometimes used to make a completely different, and

incredibly strong, causal claim. Econometricians switch between the two usages in a classic

case of motte and bailey.

In keeping with the above structure, I'll start with clearly stating the causal claim, then I'll analyse

quotes which trade on the ambiguity between the causal and algebraic claims.

The causal claim

We think of

Y = β + β X + u

Not as a regression equation, but as a complete causal account of everything causally affecting 

Y . For example, if there are ϕ things causally affecting Y , we have:

Y = β + β X + β A + β B + ... + β ϕ

We can think of this claim as equivalent to an infinite lists of counterfactuals, giving the

potential values of Y  for every combination of values of the causal factors X ,A,B..., ϕ. It also

makes the claim that nothing else has a causal effect on Y .

(if we think the world is non-deterministic, the claim becomes 

Y = β + β X + β A + β B + ... + β ϕ + ε , where ε  are i random variables, and we

have a list of counterfactuals giving the potential distributions of Y  for every combination of

values of the causal factors.)

That's a rather huge claim. In any realistic case, causal chains are incredibly long and entangled,

so that basically everything affects everything else in some small way. So the claim often

amounts to an entire causal model of the world.

Hermeneutics (II)

Stock and Watson p. 158, claim E:

i 0 1 i i

i 0 1 i 2 i 3 i ϕ i

i 0 1 i 2 i 3 i ϕ i i i

The term u is the error term [...]. This term contains all the other factors besides X  that

determine the value of the dependent variable, Y , for a specific observation i

http://slatestarcodex.com/2014/11/03/all-in-all-another-brick-in-the-motte/


This is a favourite trick: use a word like "determines", which heavily implies a causal claim, but

stay just shy of being unambigously causal. That way you can always retreat to the algebraic

claim.

Indeed, under the algebraic interpretation, claim E is puzzling. What on earth does it mean for a

number to "contain", "factors" that "determine" the value of another number? As far as the

mathematics is concerned, we have no concept of "determine", much less of a number

"containing" another number.

A causal variant of claim E would be:

Wooldrige, p.92f, claim F:

Stock and Watson, p.131, claim G:

Stock and Watson, p. 170, claim H:

The term u is the further-causes term [...]. This term contains all the other factors

besides X  that cause the value of the dependent variable, Y , for a specific observation 

i

Assumption MRL.4:

When assumption MLR.4 holds, we often say that we have exogenous explanatory

variables. If x  is correlated with u for any reason, then x  is said to be an endogenous

explanatory variable [...] Unfortunately, we will never know for sure whether the average

value of the unobservables is unrelated to the explanatory variables.

E[u ∣ x , x , x , ..., x ] = 01 2 3 k

j j

The causal effect of a treatment is the expected effect on the outcome of interest of the

treatment as measured in a ideal randomized controlled experiment. This effect can be

expressed as the difference of two conditional expectations. Specifically, the causal

effect on Y  of treatment level x is the difference in the conditional expectations 

E[Y ∣ X = x] − E[Y ∣ X = 0] where E[Y ∣ X = x] is the expected value of of Y

for the treatment group (which received treatment level X = x) in an ideal randomized

controlled experiment and E[Y ∣ X = 0] is the expected value of Y  for the control

group (which receives treatment level X = 0).



Knowns and unknowns

Wooldridge p. 60, Claim I:

University of Oxford Econometrics lecture slides, Michaelmas Term 2017, claim J:

1. For the curious, or those who have to much time on their hands, I include a full version

history, showing how this document evolved over the past few weeks. It's an interesting

window into my thought process. ↩ 

2. As a separate gripe from the main one in this post, I note that often what I call e + w  is

just written as w , by this I mean that in the same document, people will write 

Y = β + β X + w  and Y = E[Y ∣ X ] + w . This is either a terrible choice of

notation (same name for two different objects) or an implicit and unnecessary (in this

case) assumption that e = 0 and u = w . ↩ 

The first of the three least squares assumptions is that the conditional distribution of u

given X  has a mean of zero. This assumption is a formal mathematical statement

about the "other factors" contained in u  and asserts that these other factors are

unrelated to X  in the sense that, given a value of X , the mean of the distribution of

these other factors is zero.
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lorem ipsum

The simple regression model 

y = β + β + u

y  and x  are observable random scalars

u  is the unobservable random disturbance or error

β  and β  are the parameters (constants) we would like to estimate
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